CSC3501

■ Temporary website: http://www.haow.ca/csc3501/

- Online video + Slides + Assignments

■ Zoom link

- Meeting ID: 3158133353
- Passcode: csc3501

Given an array of positive integers. All numbers occur even number of times except one number which occurs odd number of times. Find the number in $\mathrm{O}(\mathrm{n})$ time \& constant space.

Examples:

$$
\begin{aligned}
& \text { Input }: \operatorname{arr}=\{1,2,3,2,3,(1,3\} \\
& \text { Output }: 3 \\
& \text { Input }: \operatorname{arr}=\{5,7,2,7,5,2,5\} \\
& \text { Output }: 5
\end{aligned}
$$

// C program to find the element
// occurring odd number of times
\#include <stdio.h>
// Function to find element occurring
// odd number of times
int getOddOccurrence(int ar[], int ar_size) \{ int res = 0;
for (int $\left.i=0 ; i<a r _s i z e ; ~ i++\right)$
res = res ${ }^{\wedge}$ ar[i];
return res;
\}
/* Driver function to test above function */
int main() \{
int $\operatorname{ar}[]=\{2,3,5,4,5,2,4,3,5,2,4,4,2\}$; int $n=$ sizeof(ar) / sizeof(ar[0]);
// Function calling printf("\%d", getOddOccurrence(ar, n)); return 0;
\}

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary

Unsigned Addition

Operands: w bits

■ Unsigned Addition Range

- Standard Addition Function
- Ignores carry output

■ Implements Modular Arithmetic

$$
\begin{gathered}
s=\operatorname{UAdd}_{w}(u, v)=u+v \bmod 2^{w} \\
22 \mathrm{mod} 2=16
\end{gathered}
$$

True Sum: w+1 bits
Discard Carry: w bits

$$
\frac{10110}{\infty}
$$

Visualizing (Mathematical) Integer Addition

Integer Addition

- 4-bit integers u, v
- Compute true sum $\operatorname{Add}_{4}(u, v)$
- Values increase linearly with u and v
- Forms planar surface

Visualizing Unsigned Addition

- Wraps Around
- If true sum $\geq 2^{w}$
- At most once

True Sum

Modular Sum

Overflow

Two's Complement Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

$\operatorname{TAdd}_{w}(u, v) \square \square_{\square} \square \bullet \bullet \square \square$

- TAdd and SAd have Identical Bit-Level Behavior
- Signed vs. unsigned addition in C : int $s, t, u, v ;$
$s=$ (int) ((unsigned) $u+$ (unsigned) v) il v 10
$(+7)$,
100102

TAdd Overflow

- Functionality
- True sum requires $w+1$ bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

$$
1 \text { 011... } 1
$$

Visualizing 2's Complement Addition

- Values
- 4-bit two's comp.
- Range from -8 to +7
- Wraps Around
- If sum $\geq 2^{w-1}$
- Becomes negative
- At most once
- If sum $<-2^{w-1}$
- Becomes positive
- At most once

Two's-Complement Negation

■ For w-bit two's-complement addition

- TMin is its own additive

Tmin

■ inverse, while any other value x has -x as its additive inverse.

$$
\stackrel{\rightharpoonup}{w}_{w}^{\mathrm{t}} x= \begin{cases}\text { TMin }_{w}, & x=\operatorname{TMin}_{w} \\ -x, & x>\operatorname{TMin}_{w}\end{cases}
$$

x		$-x$	
[1100]	-4	[0100)	(4)
[1000]	-8	[1000]	-8
[0101]	5	[1011]	-5
[0111]	7	[1001]	-7

Multiplication

Multiplication

- Goal: Computing Product of w-bit numbers x, y
- Either signed or unsigned
- But, exact results can be bigger than w bits
- Unsigned: up to $2 w$ bits
- Result range: $0 \leq x^{*} y \leq\left(2^{w}-1\right)^{2}=2^{2 w}-2^{w+1}+1$
- Two's complement min (negative): Up to $2 w-1$ bits
- Result range: $x^{*} y \geq\left(-2^{w-1}\right)^{*}\left(2^{w-1}-1\right)=-2^{2 w-2}+2^{w-1}$
- Two's complement max (positive): Up to $2 w$ bits, but only for $\left(T M i n_{w}\right)^{2}$
- Result range: $x^{*} y \leq\left(-2^{w-1}\right)^{2}=2^{2 w-2}$
- So, maintaining exact results...
- would need to keep expanding word size with each product computed
- is done in software, if needed
- e.g., by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C

Operands: w bits

True Product: 2*w bits
Discard w bits: w bits

- Standard Multiplication Function

$$
5 * 5=25
$$

- Ignores high order w bits

$$
0101
$$

- Implements Modular Arithmetic

$$
0101
$$

$$
\begin{aligned}
& \operatorname{UMult}_{w}(u, v)=u \cdot v \bmod 2^{w} \\
& 25 \bmod 16 a \\
& \begin{array}{c}
01001 \\
0000 \\
01001 \\
0000 \\
000(1) 1201
\end{array}=9
\end{aligned}
$$

Signed Multiplication in C

Operands: w bits

Discard w bits: w bits
 $10 \mid(-3)$

- Standard Multiplication Function
- Ignores high order w bits

0000

- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

Example

\rangle								
Mode	x		y			${ }^{1} \times$	Truncated $x \cdot y$	
Unsigned	5	[101]	3	[011]	15	[001)111]	7	[111]
Two's complement	-3	[101]	3	[011]	-9	[110111]	-1	[111]
Unsigned	4	[100]	7	[111]	28	[011100]	4	[100]
Two's complement	-4	[100]	-1	[111]	4	(000) 00$]$	-4	[100]
Unsigned	3	[011]	3	[011]	9	[001001]	1	[001]
Two's complement	3	[011]	3	[011]	9	[001001]	1	[001]

Figure 2.27 Three-bit unsigned and two's-complement multiplication examples. Although the bit-level representations of the full products may differ, those of the truncated products are identical.

Power-of-2 Multiply with Shift

- Operation
u. $\ll-k$ gives u * 2^{k}
- Both signed and unsigned

Operands: w bits
k
u

Discard k bits: w bits

Examples

- (u<<5)-(u<<3)=(u*24)
- Most machines shift and add faster than multiply
- Compiler generates this code automatically

$$
6 * 2=12
$$

Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
- u >> k give $\left\lfloor u / 2^{k}\right\rfloor$
- Uses logical shift

Operands:
Division:

Result:

Two's-Complement Division with Shift

■ Quotient of Unsigned by Power of 2

- u >> kgives Lu / 2k」
- Uses logical shift

Operands:
Division:

Result: \square

\mathbf{k}	$\gg \mathbf{k}$ (binary)	Decimal	$-12,340 / 2^{\mathbf{k}}$
0	$\mathbf{1 1 0 0 1 1 1 1 1 1 0 0 1 1 0 0}$	$-12,340$	$-12,340.0$
1	1110011111100110	-6.170	$-6,170.0$
4	1111110011111100	-172	-771.25
8	1111111111001111	-49	-48.203125

Two's-Complement Division with Shift

- Correction

- Adding a bias to fix
- $(u+(1 \ll k)-1) \gg k$ give $\left\lceil u / 2^{k}\right\rceil$.

\mathbf{k}	Bias	$-12,340+$ bias (binary)	$\gg \mathbf{k}$ (binary)	Decimal	$-12,340 / 2^{\mathbf{k}}$
0	0	$\mathbf{1 1 0 0 1 1 1 1 1 1 0 0 1 1 0 0}$	$\mathbf{1 1 0 0 1 1 1 1 1 1 0 0 1 1 0 0}$	$-12,340$	$-12,340.0$
1	1	$\mathbf{1 1 0 0 1 1 1 1 1 0 0 1 1 0 1}$	$\mathbf{1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 0}$	$-6,170$	$-6,170.0$
4	15	$\mathbf{1 1 0 0 1 1 1 1 1 0 1 1 0 1 1}$	111110011111101	-771	-771.25
8	255	$\mathbf{1 1 0 1 0 0 0 0 1 1 0 0 1 0 1 1}$	111111111010000	$\frac{-48}{-48.203125}$	

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
- Representations in memory, pointers, strings

Arithmetic: Basic Rules

- Addition:
- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^{w}
- Mathematical addition + possible subtraction of 2^{w}
- Signed: modified addition mod 2^{w} (result in proper range)
- Mathematical addition + possible addition or subtraction of 2^{w}
- Multiplication:
- Unsigned/signed: Normalmultiplication followed by truncate, same operation onbit level
- Unsigned: multiplication mod ${ }^{\text {w }}$
- Signed: modified multiplication mod ${ }^{2 w}$ (result in proper range)

Why Should I Use Unsigned?

- Don't use without understanding implications
- Easy to make mistakes

- Can be very subtle \#define DELTA sizeof(int)

int i;
for ($i=$ CNT; $i-D E L T A>=0 ; i-=$ DELTA)

Counting Down with Unsigned

■ Proper way to use unsigned as loop index

- See Robert Seacord, Secure Coding in C and C++
- C Standard guarantees that unsigned addition will behave like modular arithmetic
- 0-1 \rightarrow UMax

■ Even better

$$
\begin{aligned}
& \text { size_t i; } \\
& \text { for (i = cnt-2; } i<\text { cnt; i--) } \\
& \quad a[i]+=a[i+1] ;
\end{aligned}
$$

- Data type size_t defined as unsigned value with length = word size
- Code will work even if cnt = UMax
- What if cnt is signed and <0 ?

```
size ti|
for (i = cnt-2; i < cnt;
i--)
    a[i] += a[i+1];
```

What if cnt is signed and <0 ?

If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned

Why Should I Use Unsigned? (cont.)

- Do Use When Performing Modular Arithmetic
- Multiprecision arithmetic

■ Do Use When Using Bits to Represent Sets

- Logical right shift, no sign extension

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
- Representations in memory, pointers, strings

Turing Machine

Turing Machine

■ Proposed by Alan Turing in 1936

Byte-Oriented Memory Organization

Note: system provides private address spaces to each "process"

- Think of a process as a program being executed
- So, a program can clobber its own data, but not that of others

$$
p+1
$$

Machine Words

- Any given computer has a ("Word Size"

- Nominal size of integer-valued data
- and of addresses

$$
2^{3^{2}}=4 a B_{\text {add space }}
$$

- Until recently, most machines used 32 bits (4 bytes) as word size
- Limits addresses to 4GB (2 2^{32} bytes)
- Increasingly, machines have 44-bit word size
- Potentially, could have 18 EB (exabytes) of addressable memory
- That's 18.4×10^{18}

- Always integral number of bytes

Word-Oriented Memory Organization

- Addresses Specify Byte Locations
- Address of first byte in word
- Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)
- Addresses of multi-byte data items are typicallvalianed according to the size of the data.

32-bit 64-bit Words Words

Bytes Addr.
R

Example Data Representations

adder

Byte Ordering

- So, how are the bytes within a multi-byte word ordered in memory?

- Conventions

- Big Endian Sun PPC Mar Internet
- Least significant byte has highest address
- Little l Indian: x86, ARM processors running Android, iOS, and Windows
- Least significant byte has lowest address

Byte Ordering Example

- Example

- Variable x has 4-byte value of 0×01234567
- Address given by $\& x$ is 0×100

Representing Integers

Decimal: 15213
Binary: 0011101101101101 Hex: $\begin{array}{llll}3 & \text { B } & 6 & D\end{array}$ int $A=15213$;
long int $C=15213$;
litte
int $B=-15213$.
IA32, x86-64 Sun

Two's complement representation

Examining Data Representations

- Code to Print Byte Representation of Data
- Casting pointer to unsigned char * allows treatment as a byte array

```
typedef unsigned char *pointer;
void show_bytes (pointer start, size_t len) {
    size t i;
    for (i = 0; i < len; i++)
    printf("%p\t0x%.2x\n",start+i) start[i]);
    printf("\n");
}
pointer t offret
```


show_bytes Execution Example

Representing Pointers

Sun	A32	x86-64
EF	AC	3C
FF'	28	1B
FB	F5	FE
2C	FF	82
		FD
		7 F
		00
		00

Different compilers \& machines assign different locations to objects Even get different results each time run program

Representing Strings

- Strings in C
- Represented by array of characters
- Each character encoded in ASCII format
- Standard 7-bit encoding of character set
- Character "0" has code 0x30
- Digit i has code 0x30+i
- String should be null-terminated
- Final character $=0$
- Compatibility
- Byte ordering not an issue

IA 32

end of
line?

Basic Character Set ${ }^{[2]}$

0×30
 7-bit character set encoding

	0x00	0x10	0x20	(0x30)	0×40	0x50	0×60	0x70
0x00	@	Δ	SP	-	i	P	i	p
0×01	£	-	!	1	A	Q	a	q
0x02	\$	Ф	"	2	B	R	b	r
0×03	$¥$	Γ	\#	3	C	S	C	S
0x04	è	\wedge	a	4	D	T	d	t
0×05	é	Ω	\%	(5)	E	U	e	u
0×06	u	Π	\&	6	F	V	f	v
0×07	İ	Ψ	'	7	G	W	g	w
0×08	ò	Σ	(8	H	X	h	x
0×09	Ç	Θ)	9	(1)	Y	i	y
0x0A	LF	三	*	:	J	Z	j	z
OxOB	\varnothing	ESC	+	;	K	Ä	k	ä
0x0C	\varnothing	\ldots	,	<	L	Ö	1	ö
0x0D	CR	æ	-	$=$	M	\tilde{N}	m	ñ
0x0E	Å	B	.	$>$	N	Ü	n	ü
0x0F	å	É	1	?	0	§	0	a

